Gå direkt till innehållet
Machine Learning for Semiconductor Materials
Machine Learning for Semiconductor Materials
Spara

Machine Learning for Semiconductor Materials

Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
Machine Learning for Semiconductor Materials studies recent techniques and methods of machine learning to mitigate the use of technology computer-aided design (TCAD). It provides various algorithms of machine learning, such as regression, decision tree, support vector machine, K-means clustering and so forth. This book also highlights semiconductor materials and their uses in multi-gate devices and the analog and radio-frequency (RF) behaviours of semiconductor devices with different materials.Features: Focuses on semiconductor materials and the use of machine learning to facilitate understanding and decision-making Covers RF and noise analysis to formulate the frequency behaviour of semiconductor devices at high frequency Explores pertinent biomolecule detection methods Reviews recent methods in the field of machine learning for semiconductor materials with real-life applications Examines the limitations of existing semiconductor materials and steps to overcome the limitations of existing TCAD software This book is aimed at researchers and graduate students in semiconductor materials, machine learning and electrical engineering.
ISBN
9781040398104
Språk
Engelska
Utgivningsdatum
2025-08-22
Förlag
CRC PRESS
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator