Gå direkt till innehållet
Ginzburg-Landau Vortices
Ginzburg-Landau Vortices
Spara

Ginzburg-Landau Vortices

Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book is concerned with the study in two dimensions of stationary solutions of u? of a complex valued Ginzburg-Landau equation involving a small parameter ?. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ? has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ? tends to zero. One of the main results asserts that the limit u-star of minimizers u? exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree - or winding number - of the boundary condition. Each singularity has degree one - or as physicists would say, vortices are quantized. The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
ISBN
9783319666730
Språk
Engelska
Utgivningsdatum
2017-09-21
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator