Gå direkt till innehållet
Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference
Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference
Spara

Real-World Reasoning: Toward Scalable, Uncertain Spatiotemporal, Contextual and Causal Inference

Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
The general problem addressed in this book is a large and important one: how to usefully deal with huge storehouses of complex information about real-world situations. Every one of the major modes of interacting with such storehouses - querying, data mining, data analysis - is addressed by current technologies only in very limited and unsatisfactory ways. The impact of a solution to this problem would be huge and pervasive, as the domains of human pursuit to which such storehouses are acutely relevant is numerous and rapidly growing. Finally, we give a more detailed treatment of one potential solution with this class, based on our prior work with the Probabilistic Logic Networks (PLN) formalism. We show how PLN can be used to carry out realworld reasoning, by means of a number of practical examples of reasoning regarding human activities inreal-world situations.
ISBN
9789491216114
Språk
Engelska
Utgivningsdatum
2011-12-02
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator