Gå direkt till innehållet
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Spara

Model-Based Recursive Partitioning with Adjustment for Measurement Error

Författare:
Engelska
Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
?Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study.
Undertitel
Applied to the Cox's Proportional Hazards and Weibull Model
Författare
Hanna Birke
ISBN
9783658085056
Språk
Engelska
Utgivningsdatum
2015-01-27
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator