Gå direkte til innholdet
Graph Embedding for Pattern Analysis
Graph Embedding for Pattern Analysis
Spar

Graph Embedding for Pattern Analysis

Engelsk
Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
Redaktør
Yun Fu, Yunqian Ma
ISBN
9781461444572
Språk
Engelsk
Utgivelsesdato
19.11.2012
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin