Gå direkte til innholdet

Puslespill -20% »

Til startsiden
Søk etter din neste leseopplevelse
Unsupervised Information Extraction by Text Segmentation
Spar

Unsupervised Information Extraction by Text Segmentation

606,-
Sendes innen 6-10 virkedager

A new unsupervised approach to the problem of Information Extraction by Text Segmentation (IETS) is proposed, implemented and evaluated herein. The authors’ approach relies on information available on pre-existing data to learn how to associate segments in the input string with attributes of a given domain relying on a very effective set of content-based features. The effectiveness of the content-based features is also exploited to directly learn from test data structure-based features, with no previous human-driven training, a feature unique to the presented approach. Based on the approach, a number of results are produced to address the IETS problem in an unsupervised fashion. In particular, the authors develop, implement and evaluate distinct IETS methods, namely ONDUX, JUDIE and iForm.

ONDUX (On Demand Unsupervised Information Extraction) is an unsupervised probabilistic approach for IETS that relies on content-based features to bootstrap the learning of structure-based features. JUDIE (Joint Unsupervised Structure Discovery and Information Extraction) aims at automatically extracting several semi-structured data records in the form of continuous text and having no explicit delimiters between them. In comparison with other IETS methods, including ONDUX, JUDIE faces a task considerably harder that is, extracting information while simultaneously uncovering the underlying structure of the implicit records containing it. iForm applies the authors’ approach to the task of Web form filling. It aims at extracting segments from a data-rich text given as input and associating these segments with fields from a target Web form.

All of these methods were evaluated considering different experimental datasets, which are used to perform a large set of experiments in order to validate the presented approach and methods. These experiments indicate that the proposed approach yields high qualityresults when compared to state-of-the-art approaches and that it is able to properly support IETS methods in a number of real applications. The findings will prove valuable to practitioners in helping them to understand the current state-of-the-art in unsupervised information extraction techniques, as well as to graduate and undergraduate students of web data management.

Mer om Adlibris

Om Adlibris

Vi er Nordens største nettbokhandel, og tilbyr over 13 millioner boktitler og det meste av det beste innen spill, leker, hobby og garn. Vår misjon er å være en moderne bokhandel for alle bokelskere: et innbydende sted for lesing, læring og skaping. Det er hva som driver oss, hver dag. Adlibris er en del av Bonnier Group.

  • Alltid gode priser

  • Fri frakt over 299,-

  • Nordens største bokhandel

Meld deg på nyhetsbrev

Motta våre beste boktips, nyheter og gode tilbud. Registrer deg nå, og få 10% rabatt på det første kjøpet ditt. Tilbudet gjelder kun nye abonnenter og privatkunder. Rabatten gjelder ikke norske bøker utgitt 2024, fag- og studielitteratur, digitale bøker og gavekort.