Gå direkte til innholdet
Robust Recognition via Information Theoretic Learning
Robust Recognition via Information Theoretic Learning
Spar

Robust Recognition via Information Theoretic Learning

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.
ISBN
9783319074160
Språk
Engelsk
Utgivelsesdato
28.8.2014
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin