Gå direkte til innholdet
Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts
Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts
Spar

Moduli Stacks of Etale (?, G)-Modules and the Existence of Crystalline Lifts

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
A foundational account of a new construction in the p-adic Langlands correspondenceMotivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazur's formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize etale (?, G)-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the BreuilMezard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.
ISBN
9780691241364
Språk
Engelsk
Utgivelsesdato
13.12.2022
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin