Gå direkte til innholdet
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Spar

Model-Based Recursive Partitioning with Adjustment for Measurement Error

Forfatter:
Engelsk
Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
?Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study.
Undertittel
Applied to the Cox's Proportional Hazards and Weibull Model
Forfatter
Hanna Birke
ISBN
9783658085056
Språk
Engelsk
Utgivelsesdato
27.1.2015
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin