Gå direkte til innholdet

Sommersalg på pocket fra 79,- »

Til startsiden
Søk etter din neste leseopplevelse
Metric Structures for Riemannian and Non-Riemannian Spaces
Spar

Metric Structures for Riemannian and Non-Riemannian Spaces

heftet, Engelsk, 2006
Forfatter:
1 498,-
Sendes innen 5-9 virkedager

Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory.

The new wave began with seminal papers by Svarc and Milnor on the growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This progress was followed by the creation of the asymptotic metric theory of infinite groups by Gromov.

The structural metric approach to the Riemannian category, tracing back to Cheeger's thesis, pivots around the notion of the Gromov–Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy–Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity.

The first stages of the new developments were presented in Gromov's course in Paris, which turned into the famous "Green Book" by Lafontaine and Pansu (1979). The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices – by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures – as well as an extensive bibliographyand index round out this unique and beautiful book.

Mer om Adlibris

Om Adlibris

Vi er Nordens største nettbokhandel, og tilbyr over 13 millioner boktitler og det meste av det beste innen spill, leker, hobby og garn. Vår misjon er å være en moderne bokhandel for alle bokelskere: et innbydende sted for lesing, læring og skaping. Det er hva som driver oss, hver dag. Adlibris er en del av Bonnier Group.

  • Alltid gode priser

  • Fri frakt over 299,-

  • Nordens største bokhandel

Meld deg på nyhetsbrev

Motta våre beste boktips, nyheter og gode tilbud. Registrer deg nå, og få 10% rabatt på det første kjøpet ditt. Tilbudet gjelder kun nye abonnenter og privatkunder. Rabatten gjelder ikke norske bøker utgitt 2024, fag- og studielitteratur, digitale bøker og gavekort.