Gå direkte til innholdet
Machine Learning and Music Generation
Spar

Machine Learning and Music Generation

innbundet, 2017
Engelsk

Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.

ISBN
9780815377207
Språk
Engelsk
Vekt
390 gram
Utgivelsesdato
5.12.2017
Antall sider
112