Gå direkte til innholdet
Link Prediction in Social Networks
Link Prediction in Social Networks
Spar

Link Prediction in Social Networks

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
Thiswork presents link prediction similarity measures for social networks that exploitthe degree distribution of the networks. In the context of link prediction indense networks, the text proposes similarity measures based on Markov inequalitydegree thresholding (MIDTs), which only consider nodes whose degree is above a thresholdfor a possible link. Also presented are similarity measures based on cliques(CNC, AAC, RAC), which assign extra weight between nodes sharing a greater numberof cliques. Additionally, a locally adaptive (LA) similarity measure isproposed that assigns different weights to common nodes based on the degreedistribution of the local neighborhood and the degree distribution of thenetwork. In the context of link prediction in dense networks, the textintroduces a novel two-phase framework that adds edges to the sparse graph toforma boost graph.
Undertittel
Role of Power Law Distribution
ISBN
9783319289229
Språk
Engelsk
Utgivelsesdato
22.1.2016
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin