Gå direkte til innholdet
Laplacian Growth on Branched Riemann Surfaces
Laplacian Growth on Branched Riemann Surfaces
Spar

Laplacian Growth on Branched Riemann Surfaces

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This book studies solutions of the Polubarinova-Galin and Lowner-Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps.  This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
ISBN
9783030698638
Språk
Engelsk
Utgivelsesdato
22.3.2021
Tilgjengelige elektroniske format
  • Epub - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin