Gå direkte til innholdet
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Spar

Introduction to Online Convex Optimization

Forfatter:
Engelsk
Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization. Introduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives. Based on the "e;Theoretical Machine Learning"e; course taught by the author at Princeton University, the second edition of this widely used graduate level text features thoroughly updated material throughout; new chapters on boosting, adaptive regret, and approachability; expanded exposition on optimization; examples of applications, including prediction from expert advice, portfolio selection, matrix completion and recommendation systems, and SVM training, offered throughout; and exercises that guide students in completing parts of proofs.
Forfatter
Elad Hazan
ISBN
9780262370134
Språk
Engelsk
Utgivelsesdato
6.9.2022
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin