Gå direkte til innholdet
Introduction to Infinite-Dimensional Analysis
Introduction to Infinite-Dimensional Analysis
Spar

Introduction to Infinite-Dimensional Analysis

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
In this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction - for an audience knowing basic functional analysis and measure theory but not necessarily probability theory - to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of  Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.
ISBN
9783540290216
Språk
Engelsk
Utgivelsesdato
25.8.2006
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin