Gå direkte til innholdet
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
Spar

Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "e;big data."e; The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
ISBN
9783319120812
Språk
Engelsk
Utgivelsesdato
7.11.2014
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin