Gå direkte til innholdet
Homotopy Index and Partial Differential Equations
Homotopy Index and Partial Differential Equations
Spar

Homotopy Index and Partial Differential Equations

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
The homotopy index theory was developed by Charles Conley for two- sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi- cal measure of an isolated invariant set, is defined to be the ho- motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "e;exit ramp"e; of N . 1 It is shown that the index is independent of the choice of the in- dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde- generate critical point p with respect to a gradient flow on a com- pact manifold. In fact if the Morse index of p is k, then the homo- topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.
ISBN
9783642728334
Språk
Engelsk
Utgivelsesdato
6.12.2012
Tilgjengelige elektroniske format
  • PDF - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin