Gå direkte til innholdet
High-Dimensional Covariance Matrix Estimation
High-Dimensional Covariance Matrix Estimation
Spar

High-Dimensional Covariance Matrix Estimation

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
Undertittel
An Introduction to Random Matrix Theory
ISBN
9783030800659
Språk
Engelsk
Utgivelsesdato
29.10.2021
Tilgjengelige elektroniske format
  • Epub - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin