Gå direkte til innholdet
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
Spar

Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance.  In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds.  Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part.  This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs.  
ISBN
9783031120312
Språk
Engelsk
Utgivelsesdato
30.10.2022
Tilgjengelige elektroniske format
  • Epub - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin