Gå direkte til innholdet
Fractal Dimension for Fractal Structures
Fractal Dimension for Fractal Structures
Spar

Fractal Dimension for Fractal Structures

Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithmsfor properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Levy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.
Undertittel
With Applications to Finance
ISBN
9783030166458
Språk
Engelsk
Utgivelsesdato
23.4.2019
Tilgjengelige elektroniske format
  • Epub - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin