
Deep Neural Networks in a Mathematical Framework
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.
- Forfatter
- Anthony L. Caterini, Dong Eui Chang
- Opplag
- 1st ed. 2018
- ISBN
- 9783319753034
- Språk
- Engelsk
- Vekt
- 310 gram
- Utgivelsesdato
- 3.4.2018
- Antall sider
- 84
