Gå direkte til innholdet
Deep Neural Networks in a Mathematical Framework
Spar

Deep Neural Networks in a Mathematical Framework

This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.

Opplag
1st ed. 2018
ISBN
9783319753034
Språk
Engelsk
Vekt
310 gram
Utgivelsesdato
3.4.2018
Antall sider
84