
Constant-Scale Natural Boundary Mapping to Reveal Global and Cosmic Processes
In this approach, any body can be represented by a 3D coordinate system. For a regular body, with its surface relatively smooth on the scale of its size, locations of features can be represented by definite geographic grid (latitude and longitude) and elevation, or deviation from the triaxial ellipsoid defined surface. A continuous surface on this body can be segmented, its distinctive regional terranes enclosed, and their inter-relationships defined, by using selected morphologically identifiable relief features (e.g., continental divides, plate boundaries, river or current systems). In this way, regions of distinction on a large, essentially spherical body can be mapped as two-dimensional ‘facets’ with their boundaries representing regional to global-scale asymmetries (e.g., continental crust, continental and oceanic crust on the Earth, farside original thicker crust and nearside thinner impact punctuated crust on the Moon). In an analogous manner, an irregular object such as an asteroid, with a surface that is rough on the scale of its size, would be logically segmented along edges of its impact-generated faces.
Bounded faces are imagined with hinges at occasional points along boundaries, resulting in a foldable ‘shape model.’ Thus, bounded faces grow organically out of the most compelling natural features. Obvious boundaries control the map’s extremities, and peripheral regions are not dismembered or grosslydistorted as in conventional map projections. 2D maps and 3D models grow out of an object’s most obvious face or terrane ‘edges,’ instead of arbitrarily by imposing a regular grid system or using regularly shaped facets to represent an irregular surface.
- Forfatter
- Pamela Elizabeth Clark, Chuck Clark
- Opplag
- 2013 ed.
- ISBN
- 9781461477617
- Språk
- Engelsk
- Vekt
- 310 gram
- Utgivelsesdato
- 6.9.2013
- Antall sider
- 116
