Gå direkte til innholdet
Advances in Data Clustering
Advances in Data Clustering
Spar

Advances in Data Clustering

Engelsk
Les i Adobe DRM-kompatibelt e-bokleserDenne e-boka er kopibeskyttet med Adobe DRM som påvirker hvor du kan lese den. Les mer
Clustering, a foundational technique in data analytics, finds diverse applications across scientific, technical, and business domains. Within the theme of "e;Data Clustering,"e; this book assumes substantial importance due to its indispensable clustering role in various contexts.As the era of online media facilitates the rapid generation of large datasets, clustering emerges as a pivotal player in data mining and machine learning. At its core, clustering seeks to unveil heterogeneous groups within unlabeled data, representing a crucial unsupervised task in machine learning. The objective is to automatically assign labels to each unlabeled datum with minimal human intervention. Analyzing this data allows for categorization and drawing conclusions applicable across diverse application domains. The challenge with unlabeled data lies in defining a quantifiable goal to guide the model-building process, constituting the central theme of clustering.This book presents concepts and different methodologies of data clustering. For example, deep clustering of images, semi-supervised deep clustering, deep multi-view clustering, etc. This book can be used as a reference for researchers and postgraduate students in related research background.
Undertittel
Theory and Applications
ISBN
9789819776795
Språk
Engelsk
Utgivelsesdato
29.12.2024
Tilgjengelige elektroniske format
  • Epub - Adobe DRM
Les e-boka her
  • E-bokleser i mobil/nettbrett
  • Lesebrett
  • Datamaskin