Siirry suoraan sisältöön
Singular Integrals, Herz-Type Function Spaces, and Boundary Problems
Singular Integrals, Herz-Type Function Spaces, and Boundary Problems
Tallenna

Singular Integrals, Herz-Type Function Spaces, and Boundary Problems

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
This monograph presents state-of-the-art results at the intersection of Harmonic Analysis, Functional Analysis, Geometric Measure Theory, and Partial Differential Equations, providing tools for treating elliptic boundary value problems for systems of PDE’s in rough domains. Largely self-contained, it develops a comprehensive Calderón-Zygmund theory for singular integral operators on many Herz-type spaces, and their associated Hardy and Sobolev spaces, in the optimal geometric-measure theoretic setting of uniformly rectifiable sets. The present work highlights the effectiveness of boundary layer potential methods as a means of establishing well-posedness results for a wide family of boundary value problems, including Dirichlet, Neumann, Regularity, and Transmission Problems. Graduate students, researchers, and professional mathematicians interested in harmonic analysis and boundary problems will find this monograph a valuable resource in the field.
ISBN
9783032125163
Kieli
englanti
Julkaisupäivä
12.1.2026
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone