
Principal Manifolds for Data Visualization and Dimension Reduction
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc.
- Toimittaja
- Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Zinovyev
- Painos
- 2008 ed.
- ISBN
- 9783540737490
- Kieli
- englanti
- Paino
- 310 grammaa
- Julkaisupäivä
- 1.10.2007
- Sivumäärä
- 340