Siirry suoraan sisältöön
Principal Manifolds for Data Visualization and Dimension Reduction
Tallenna

Principal Manifolds for Data Visualization and Dimension Reduction

In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc.

Painos
2008 ed.
ISBN
9783540737490
Kieli
englanti
Paino
310 grammaa
Julkaisupäivä
1.10.2007
Sivumäärä
340