Siirry suoraan sisältöön
Monge-Ampere Equation
Monge-Ampere Equation
Tallenna

Monge-Ampere Equation

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
Now in its second edition, this monograph explores the Monge-Ampere equation and the latest advances in its study and applications.  It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli.  The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions.  An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts.  Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions.  New to this edition is a chapter on the linearized Monge-Ampere equation and a chapter on interior Holder estimates for second derivatives.  Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampere-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics.  Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.
ISBN
9783319433745
Kieli
englanti
Julkaisupäivä
22.10.2016
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone