Siirry suoraan sisältöön
Models of Neural Networks III
Tallenna

Models of Neural Networks III

sidottu, 1995
englanti
One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Net­ works," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and­ fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argu­ ment since has been shown to be rather susceptible to generalization.
Alaotsikko
Association, Generalization, and Representation
Painos
1996 ed.
ISBN
9780387943688
Kieli
englanti
Paino
446 grammaa
Julkaisupäivä
1.12.1995
Sivumäärä
311