Siirry suoraan sisältöön
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Model-Based Recursive Partitioning with Adjustment for Measurement Error
Tallenna

Model-Based Recursive Partitioning with Adjustment for Measurement Error

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
?Model-based recursive partitioning (MOB) provides a powerful synthesis between machine-learning inspired recursive partitioning methods and regression models. Hanna Birke extends this approach by allowing in addition for measurement error in covariates, as frequently occurring in biometric (or econometric) studies, for instance, when measuring blood pressure or caloric intake per day. After an introduction into the background, the extended methodology is developed in detail for the Cox model and the Weibull model, carefully implemented in R, and investigated in a comprehensive simulation study.
Alaotsikko
Applied to the Cox's Proportional Hazards and Weibull Model
Kirjailija
Hanna Birke
ISBN
9783658085056
Kieli
englanti
Julkaisupäivä
27.1.2015
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone