Siirry suoraan sisältöön
Medical Image Recognition, Segmentation and Parsing
Medical Image Recognition, Segmentation and Parsing
Tallenna

Medical Image Recognition, Segmentation and Parsing

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn:- Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects- Methods and theories for medical image recognition, segmentation and parsing of multiple objects- Efficient and effective machine learning solutions based on big datasets- Selected applications of medical image parsing using proven algorithms- Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects- Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets- Includes algorithms for recognizing and parsing of known anatomies for practical applications
Alaotsikko
Machine Learning and Multiple Object Approaches
Kirjailija
S. Kevin Zhou
ISBN
9780128026762
Kieli
englanti
Julkaisupäivä
11.12.2015
Formaatti
  • Epub - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone