Siirry suoraan sisältöön
Learning and Generalisation
Learning and Generalisation
Tallenna

Learning and Generalisation

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
Learning and Generalization provides a formal mathematical theory addressing intuitive questions of the type: How does a machine learn a concept on the basis of examples? How can a neural network, after training, correctly predict the outcome of a previously unseen input? How much training is required to achieve a given level of accuracy in the prediction? How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite time?The second edition covers new areas including: support vector machines; fat-shattering dimensions and applications to neural network learning; learning with dependent samples generated by a beta-mixing process; connections between system identification and learning theory; probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms.It also contains solutions to some of the open problems posed in the first edition, while adding new open problems.
Alaotsikko
With Applications to Neural Networks
ISBN
9781447137481
Kieli
englanti
Julkaisupäivä
14.3.2013
Kustantaja
SPRINGER LONDON
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone