Siirry suoraan sisältöön
Harnessing Data Types for Energy Efficiency
Tallenna

Harnessing Data Types for Energy Efficiency

Kirjailija:
pokkari, 2024
englanti
Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms-Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF-are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.
Alaotsikko
Innovative Cloud Approach
Kirjailija
Muhammad Junaid
ISBN
9786207487295
Kieli
englanti
Paino
522 grammaa
Julkaisupäivä
20.4.2024
Sivumäärä
356