Siirry suoraan sisältöön
Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence
Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence
Tallenna

Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,?)* with Lq(X,L,?), where 1/p+1/q=1, as long as 1 = p<infinity. However, Linfinity(X,L,?)* cannot be similarly described, and is instead represented as a class of finitely additive measures.This book provides a reasonably elementary account of the representation theory of Linfinity(X,L,?)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in Linfinity(X,L,?) to be weakly convergent, applicable in the one-point compactification of X, is given.With a clear summary of prerequisites, and illustrated by examples including Linfinity(Rn) and the sequence space linfinity, this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences.
Alaotsikko
A Primer
Kirjailija
John Toland
ISBN
9783030347321
Kieli
englanti
Julkaisupäivä
3.1.2020
Formaatti
  • Epub - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone