
Deep Neural Networks in a Mathematical Framework
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.
- Kirjailija
- Anthony L. Caterini, Dong Eui Chang
- Painos
- 1st ed. 2018
- ISBN
- 9783319753034
- Kieli
- englanti
- Paino
- 310 grammaa
- Julkaisupäivä
- 3.4.2018
- Kustantaja
- Springer International Publishing AG
- Sivumäärä
- 84