Siirry suoraan sisältöön
Conditional Moment Estimation of Nonlinear Equation Systems
Conditional Moment Estimation of Nonlinear Equation Systems
Tallenna

Conditional Moment Estimation of Nonlinear Equation Systems

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.
Alaotsikko
With an Application to an Oligopoly Model of Cooperative R&D
Kirjailija
Joachim Inkmann
ISBN
9783642565717
Kieli
englanti
Julkaisupäivä
6.12.2012
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone