Siirry suoraan sisältöön
Concepts In Abstract Algebra
Concepts In Abstract Algebra
Tallenna

Concepts In Abstract Algebra

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
Abstract algebra is the subject area of mathematics that studies algebraic structures such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this area from what was normally referred to as algebra, the study of the rules for manipulating formulae and algebraic expressions involving unknowns and real or complex numbers, often now called elementary algebra. The distinction is rarely made in more recent writings. Contemporary mathematics and mathematical physics make extensive use of abstract algebra; for example, theoretical physics draws on Lie algebras. Subject areas such as algebraic number theory, algebraic topology, and algebraic geometry apply algebraic methods to other areas of mathematics. Representation theory, roughly speaking, takes the ';abstract' out of ';abstract algebra', studying the concrete side of a given structure; see model theory. Two mathematical subject areas that study the properties of algebraic structures viewed as a whole are universal algebra and category theory. The present publication has been written by keeping in view the basic concepts of the subject.
Kirjailija
K. N. P. Singh
ISBN
9789353146290
Kieli
englanti
Julkaisupäivä
30.6.2013
Formaatti
  • Epub - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone