Siirry suoraan sisältöön
Asymptotic Expansion and Weak Approximation
Asymptotic Expansion and Weak Approximation
Tallenna

Asymptotic Expansion and Weak Approximation

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
This book provides a self-contained lecture on a Malliavin calculus approach to asymptotic expansion and weak approximation of stochastic differential equations (SDEs),  along with numerical methods for computing parabolic partial differential equations (PDEs). Constructions of weak approximation and asymptotic expansion are given in detail using Malliavin’s integration by parts with theoretical convergence analysis. Weak approximation algorithms and Python codes are available with numerical examples. Moreover, the weak approximation scheme is effectively applied to high-dimensional nonlinear problems without suffering from the curse of dimensionality through combining with a deep learning method. Readers including graduate-level students, researchers, and practitioners can understand both theoretical and applied aspects of recent developments of asymptotic expansion and weak approximation.
Alaotsikko
Applications of Malliavin Calculus and Deep Learning
ISBN
9789819682805
Kieli
englanti
Julkaisupäivä
2.10.2025
Formaatti
  • Epub - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone