Siirry suoraan sisältöön
Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations
Tallenna

Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations

Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
In this second volume, a general approach is developed to provide approximate parameterizations of the "e;small"e; scales by the "e;large"e; ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.
Alaotsikko
Stochastic Manifolds for Nonlinear SPDEs II
ISBN
9783319125206
Kieli
englanti
Julkaisupäivä
23.12.2014
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone