Siirry suoraan sisältöön
Complexity Theory of Real Functions
Complexity Theory of Real Functions
Tallenna

Complexity Theory of Real Functions

Kirjailija:
englanti
Lue Adobe DRM-yhteensopivassa e-kirjojen lukuohjelmassaTämä e-kirja on kopiosuojattu Adobe DRM:llä, mikä vaikuttaa siihen, millä alustalla voit lukea kirjaa. Lue lisää
Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com- putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some- times also yield interesting new practical algorithms. A typical exam- ple is the application of the ellipsoid algorithm to combinatorial op- timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe- matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc- tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per- mutation groups. In the area of numerical computation, there are also two tradi- tionally independent approaches: recursive analysis and numerical analysis.
Kirjailija
K. Ko
ISBN
9781468468021
Kieli
englanti
Julkaisupäivä
6.12.2012
Formaatti
  • PDF - Adobe DRM
Lue e-kirjoja täällä
  • Lue e-kirja mobiililaitteella/tabletilla
  • Lukulaite
  • Tietokone