Gå direkt till innehållet
Theory of Stein Spaces
Theory of Stein Spaces
Spara

Theory of Stein Spaces

Författare:
Engelska
1 207 kr
Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
1. The classical theorem of Mittag-Leffler was generalized to the case of several complex variables by Cousin in 1895. In its one variable version this says that, if one prescribes the principal parts of a merom orphic function on a domain in the complex plane e, then there exists a meromorphic function defined on that domain having exactly those principal parts. Cousin and subsequent authors could only prove the analogous theorem in several variables for certain types of domains (e. g. product domains where each factor is a domain in the complex plane). In fact it turned out that this problem can not be solved on an arbitrary domain in em, m ~ 2. The best known example for this is a "e;notched"e; bicylinder in 2 2 e . This is obtained by removing the set { (z , z ) E e 11 z I ~ !, I z 1 ~ !}, from 1 2 1 2 2 the unit bicylinder, ~ :={(z , z ) E e llz1 < 1, lz1 < 1}. This domain D has 1 2 1 2 the property that every function holomorphic on D continues to a function holo- morphic on the entire bicylinder. Such a phenomenon never occurs in the theory of one complex variable. In fact, given a domain G c e, there exist functions holomorphic on G which are singular at every boundary point of G.
Översättare
A. Huckleberry
ISBN
9781475743579
Språk
Engelska
Utgivningsdatum
2013-03-14
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator