Gå direkt till innehållet
Heights of Polynomials and Entropy in Algebraic Dynamics
Heights of Polynomials and Entropy in Algebraic Dynamics
Spara

Heights of Polynomials and Entropy in Algebraic Dynamics

Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
Arithmetic geometry and algebraic dynamical systems are flourishing areas of mathematics. Both subjects have highly technical aspects, yet both of- fer a rich supply of down-to-earth examples. Both have much to gain from each other in techniques and, more importantly, as a means for posing (and sometimes solving) outstanding problems. It is unlikely that new graduate students will have the time or the energy to master both. This book is in- tended as a starting point for either topic, but is in content no more than an invitation. We hope to show that a rich common vein of ideas permeates both areas, and hope that further exploration of this commonality will result. Central to both topics is a notion of complexity. In arithmetic geome- try 'height' measures arithmetical complexity of points on varieties, while in dynamical systems 'entropy' measures the orbit complexity of maps. The con- nections between these two notions in explicit examples lie at the heart of the book. The fundamental objects which appear in both settings are polynomi- als, so we are concerned principally with heights of polynomials. By working with polynomials rather than algebraic numbers we avoid local heights and p-adic valuations.
ISBN
9781447138983
Språk
Engelska
Utgivningsdatum
2013-06-29
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator