
Deep Neural Networks in a Mathematical Framework
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks.
- Författare
- Anthony L. Caterini, Dong Eui Chang
- Upplaga
- 1st ed. 2018
- ISBN
- 9783319753034
- Språk
- Engelska
- Vikt
- 310 gram
- Utgivningsdatum
- 2018-04-03
- Sidor
- 84
