Gå direkt till innehållet
Asymptotic Expansion and Weak Approximation
Asymptotic Expansion and Weak Approximation
Spara

Asymptotic Expansion and Weak Approximation

Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book provides a self-contained lecture on a Malliavin calculus approach to asymptotic expansion and weak approximation of stochastic differential equations (SDEs),  along with numerical methods for computing parabolic partial differential equations (PDEs). Constructions of weak approximation and asymptotic expansion are given in detail using Malliavin’s integration by parts with theoretical convergence analysis. Weak approximation algorithms and Python codes are available with numerical examples. Moreover, the weak approximation scheme is effectively applied to high-dimensional nonlinear problems without suffering from the curse of dimensionality through combining with a deep learning method. Readers including graduate-level students, researchers, and practitioners can understand both theoretical and applied aspects of recent developments of asymptotic expansion and weak approximation.
Undertitel
Applications of Malliavin Calculus and Deep Learning
ISBN
9789819682805
Språk
Engelska
Utgivningsdatum
2025-10-02
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator