Gå direkt till innehållet

Fynda 4 pocket för 3 »

Till startsidan
Böcker, spel, garn, pyssel m.m.
Arc-Search Techniques for Interior-Point Methods
Arc-Search Techniques for Interior-Point Methods
Spara

Arc-Search Techniques for Interior-Point Methods

e-bok, Engelska, 2020
Författare:
1 011 kr
Lägsta pris på PriceRunner
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book discusses an important area of numerical optimization, called interior-point method. This topic has been popular since the 1980s when people gradually realized that all simplex algorithms were not convergent in polynomial time and many interior-point algorithms could be proved to converge in polynomial time. However, for a long time, there was a noticeable gap between theoretical polynomial bounds of the interior-point algorithms and efficiency of these algorithms. Strategies that were important to the computational efficiency became barriers in the proof of good polynomial bounds. The more the strategies were used in algorithms, the worse the polynomial bounds became. To further exacerbate the problem, Mehrotra's predictor-corrector (MPC) algorithm (the most popular and efficient interior-point algorithm until recently) uses all good strategies and fails to prove the convergence. Therefore, MPC does not have polynomiality, a critical issue with the simplex method.This book discusses recent developments that resolves the dilemma. It has three major parts. The first, including Chapters 1, 2, 3, and 4, presents some of the most important algorithms during the development of the interior-point method around the 1990s, most of them are widely known. The main purpose of this part is to explain the dilemma described above by analyzing these algorithms' polynomial bounds and summarizing the computational experience associated with them. The second part, including Chapters 5, 6, 7, and 8, describes how to solve the dilemma step-by-step using arc-search techniques. At the end of this part, a very efficient algorithm with the lowest polynomial bound is presented. The last part, including Chapters 9, 10, 11, and 12, extends arc-search techniques to some more general problems, such as convex quadratic programming, linear complementarity problem, and semi-definite programming.

Mer på Adlibris

Om Adlibris

Adlibris är Nordens största bokhandel och erbjuder över 13 miljoner boktitlar med det senaste inom spel, pyssel, garn och allt som hör en modern bokhandel till. Adlibris Campus erbjuder studenter att köpa och sälja både ny och begagnad studentlitteratur och Adlibris Pocket erbjuder ett skräddarsytt och handplockat sortiment i reselägen. Adlibris är en del av Bonnier Group.

  • Alltid bra priser

  • Fri frakt över 299 kr

  • Smidiga leveranser

Nyhetsbrev

Ta del av våra bästa lästips, erbjudanden och kampanjer. Anmäl dig nu och få 10% rabatt på ditt första köp. Erbjudandet gäller endast nya prenumeranter, privatkunder, ej kurslitteratur, digitala böcker eller presentkort.