Gå direkt till innehållet
Variational Methods
Variational Methods
Spara

Variational Methods

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
It would be hopeless to attempt to give a complete account of the history of the calculus of variations. The interest of Greek philosophers in isoperimetric problems underscores the importance of "e;optimal form"e; in ancient cultures, see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. While variatio- nal problems thus are part of our classical cultural heritage, the first modern treatment of a variational problem is attributed to Fermat (see Goldstine [1; p.l]). Postulating that light follows a path of least possible time, in 1662 Fer- mat was able to derive the laws of refraction, thereby using methods which may already be termed analytic. With the development of the Calculus by Newton and Leibniz, the basis was laid for a more systematic development of the calculus of variations. The brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all from the city of Basel in Switzerland, were to become the "e;founding fathers"e; (Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub- mitted "e;A method for finding curves enjoying certain maximum or minimum properties"e;, published 1744, the first textbook on the calculus of variations.
Undertitel
Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
Författare
Michael Struwe
ISBN
9783662026243
Språk
Engelska
Utgivningsdatum
2013-04-17
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator