Gå direkt till innehållet
The Burnside Problem and Identities in Groups
Spara

The Burnside Problem and Identities in Groups

Three years have passed since the publication of the Russian edition of this book, during which time the method described has found new applications. In [26], the author has introduced the concept of the periodic product of two groups. For any two groups G and G without elements of order 2 and for any 1 2 odd n ~ 665, a group G @ Gmay be constructed which possesses several in­ 1 2 teresting properties. In G @ G there are subgroups 6 and 6 isomorphic to 1 2 1 2 G and G respectively, such that 6 and 6 generate G @ G and intersect 1 2 1 2 1 2 in the identity. This operation "@" is commutative, associative and satisfies Mal'cev's postulate (see [27], p. 474), i.e., it has a certain hereditary property for subgroups. For any element x which is not conjugate to an element of either 6 1 or 6 , the relation xn = 1 holds in G @ G • From this it follows that when 2 1 2 G and G are periodic groups of exponent n, so is G @ G • In addition, if G 1 2 1 2 1 and G are free periodic groups of exponent n the group G @ G is also free 2 1 2 periodic with rank equal to the sum of the ranks of G and G • I believe that groups 1 2
Författare
Sergej I. Adian
Upplaga
Softcover reprint of the original 1st ed. 1979
ISBN
9783642669347
Språk
Engelska
Vikt
310 gram
Utgivningsdatum
2011-12-16
Sidor
314