Gå direkt till innehållet
Tables of Bessel Transforms
Spara

Tables of Bessel Transforms

Författare:
Engelska
This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY)~K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) + I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' * f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21-~[r(~~+~-~v)r(~~+~+~v)]-1 VI. g(y) . J f (x) (xy) ~s (xy) dx o ~,v l-~ -1 VI' . f(x) 2 [r (~~+~-~v) r (~~+~+~v) ] * * J -5 (xy)]dy g(y) (XY)~[S~,v(xy) ~,v 0 [xy)~]dX VII. g(y) f(x)\ ~ J 0 0 VII' * f(x) g(y) \ [(xy) lz]dy ~ f 0 0 with \ (z) o (For notations and definitions see the appendix of this book. ) The transform VII is also known as the divisor transform.
Författare
F. Oberhettinger
Upplaga
Softcover reprint of the original 1st ed. 1972
ISBN
9783540059974
Språk
Engelska
Vikt
310 gram
Utgivningsdatum
1972-01-01
Sidor
290