Gå direkt till innehållet
Methods for Solving Incorrectly Posed Problems
Methods for Solving Incorrectly Posed Problems
Spara

Methods for Solving Incorrectly Posed Problems

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini- tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ("e;sol vabi li ty"e; condition); (2) The equality AU = AU for any u ,u DA implies the I 2 l 2 equality u = u ("e;uniqueness"e; condition); l 2 (3) The inverse operator A-I is continuous on F ("e;stability"e; condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any "e;ill-posed"e; (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.
Författare
V.A. Morozov
Översättare
A.B. Aries
Redaktör
Z. Nashed
ISBN
9781461252801
Språk
Engelska
Utgivningsdatum
2012-12-06
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator