Gå direkt till innehållet
Hyperbolic Manifolds and Discrete Groups
Hyperbolic Manifolds and Discrete Groups
Spara

Hyperbolic Manifolds and Discrete Groups

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
The main goal of the book is to present a proof of the following. Thurston's Hyperbolization Theorem ("e;The Big Monster"e;). Suppose that M is a compact atoroidal Haken 3-manifold that has zero Euler characteristic. Then the interior of M admits a complete hyperbolic metric of finite volume. This theorem establishes a strong link between the geometry and topology 3 of 3-manifolds and the algebra of discrete subgroups of Isom(JH[ ). It completely changed the landscape of 3-dimensional topology and theory of Kleinian groups. Further, it allowed one to prove things that were beyond the reach of the standard 3-manifold technique as, for example, Smith's conjecture, residual finiteness of the fundamental groups of Haken manifolds, etc. In this book we present a complete proof of the Hyperbolization Theorem in the "e;generic case."e; Initially we planned 1 including a detailed proof in the remaining case of manifolds fibered over as well. However, since Otal's book [Ota96] (which treats the fiber bundle case) became available, only a sketch of the proof in the fibered case will be given here.
Författare
Michael Kapovich
ISBN
9780817649135
Språk
Engelska
Utgivningsdatum
2009-08-04
Tillgängliga elektroniska format
  • PDF - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator