Gå direkt till innehållet
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
Spara

Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing

Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing;Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization;Describes real applications todemonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
Undertitel
Software Optimizations and Hardware/Software Codesign
ISBN
9783031399329
Språk
Engelska
Utgivningsdatum
2023-10-09
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator