Gå direkt till innehållet
Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence
Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence
Spara

Dual of Linfinity(X,L,?), Finitely Additive Measures and Weak Convergence

Författare:
Engelska
Läs i Adobe DRM-kompatibel e-boksläsareDen här e-boken är kopieringsskyddad med Adobe DRM vilket påverkar var du kan läsa den. Läs mer
In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,?)* with Lq(X,L,?), where 1/p+1/q=1, as long as 1 = p<infinity. However, Linfinity(X,L,?)* cannot be similarly described, and is instead represented as a class of finitely additive measures.This book provides a reasonably elementary account of the representation theory of Linfinity(X,L,?)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in Linfinity(X,L,?) to be weakly convergent, applicable in the one-point compactification of X, is given.With a clear summary of prerequisites, and illustrated by examples including Linfinity(Rn) and the sequence space linfinity, this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences.
Undertitel
A Primer
Författare
John Toland
ISBN
9783030347321
Språk
Engelska
Utgivningsdatum
2020-01-03
Tillgängliga elektroniska format
  • Epub - Adobe DRM
Läs e-boken här
  • E-boksläsare i mobil/surfplatta
  • Läsplatta
  • Dator